Matematika

Pertanyaan

sistem persamaan liniar tiga variabel

a. x,y,z adlah penyelesaian sistem persamaan :

3x + 4y - 5z = 12
2x + 5y + z = 17
6x - 2y + 3z = 17

b. x,y,z adlah penyelesaian sistem persamaan :

x + 2y = -4
2x + z = 5
y - 3z = -6

c.
4/x + 3/y + 1/z = 9
3/x - 4/y + 2/z = 3
2/x + 5/y - 1/z = 5

1 Jawaban

  • 3x + 4y - 5z = 12 ... (i)
    2x + 5y + z = 17 ... (ii)
    6x - 2y + 3z = 17
    ... (iii)
    Eliminasi (i) dan (ii)
    3x + 4y - 5z = 12 (x1) --> 3x + 4y - 5z = 12
    2x + 5y + z = 17
    (x5) --> 10x + 25y + 5z = 85 +
                                           13x + 29y = 97 ... (iv)
    Eliminasi (ii) dan (iii)
    2x + 5y + z = 17 (x3) --> 6x + 15y + 3z = 51
    6x - 2y + 3z = 17
    (x1) --> 6x - 2y + 3z = 17 _
                                                 17y = 34 --> y = 2
    substitusi y = 2 ke (iv)
    13x + 29y = 97
    13x +29.2 = 97
    13x = 97 - 58
    13x = 39
    x = 3

    subst ke (i)
    3x + 4y - 5z = 12
    3.3 + 4.2 - 5z = 12
    9 + 8 - 5z = 12
    -5z = 12 - 8 - 9
    -5z = -5
    z = 1
    Hp = {3,2,1}


    x + 2y = -4 .. (i)
    2x + z = 5 ... (ii)
    y - 3z = -6
    ... (iii)
    Eliminasi (i) dan (ii)
    x + 2y = -4 (x2) --> 2x + 4y = -8
    2x + z = 5 (x1) -->
    2x + z = 5  _
                                 4y - z = -13 ... (iv)
    Eliminasi (iii) dan 9iv)
    y - 3z = -6 (x4) --> 4y - 12z = -24
    4y - z = -13 (x1) --> 4y - z = -13  _
                                     -11z = -11 --> z = 1
    Substitusi z = 1 ke (iv)
    4y - z = -13
    4y - 1 = -13
    4y = -13 + 1
    4y = -12
    y = -3
    Subst ke (ii)

    2x + z = 5
    2x + 1 = 5
    2x = 4
    x = 2
    Hp = {2,-3,1}


    misal 1/x = a, 1/y = b, dan 1/z = c maka pers mjdi:
    4a + 3b + c = 9 ... (i)
    3a - 4b + 2c = 3 ... (ii)
    2a + 5b - c = 5
    ... (iii)
    Eliminasi (i) dan (ii)
    4a + 3b + c = 9 (x2) --> 8a + 6b + 2c = 18
    3a - 4b + 2c = 3
    (x1) --> 3a - 4b + 2c = 3    _
                                         5a + 10b = 15 ... (iv)
    Eliminasi (i) dan 9iii)
    4a + 3b + c = 9
    2a + 5b - c = 5
      +
    6a + 8b = 14 ... (v)
    Eliminasi (iv) dan (v)
    5a + 10b = 15 (x4) --> 20a + 40b = 60
    6a + 8b = 14 (x5) --> 30a + 40b = 70 _
                                       -10a = -10 --> a = 1
    Subst a = 1 ke (iv)
    5a + 10b = 15
    5.1  +10b = 15
    10b = 15 - 5
    b = 10/10
    b = 1
    Subst ke (i)
    4a + 3b + c = 9
    4.1 + 3.1 + c = 9
    c = 9 - 4 - 3
    c = 2
    a = 1 --> 1/x = 1 --> x = 1
    b = 1 --> 1/y = 1 --> y = 1
    c = 2 --> 1/z = 2 --> z = 1/2
    Hp = {1,1,1/2}

Pertanyaan Lainnya