Matematika

Pertanyaan

jika a dan b adalah bilangan real positif yang lebih besar dari 1, tunjukkan bahwa a logb + ¹/a logb = 0

2 Jawaban

  • [tex]^alog(b) + ^1^/^a log(b) \\ = log(b)/log(a) + log(b)/log(1/a) \\ = log(b)/log(a) + log(b)/(log(1) - log(a)) \\ = log(b)/log(a) + log(b)/(0-log(a)) \\ = log(b)/log(a) + (log(b)/-log(a)) \\ = log(b)/log(a) - log(b)/log(a) = 0[/tex]

    Dapat disimpulkan bahwa [tex]^alog(b) + ^1^/^a log(b) = 0[/tex]
  • logb/loga + logb/log(1/a)
    logb/loga + logb/log(a)^-1
    logb/loga + logb/-loga
    logb/loga + (-logb/loga)
    logb/loga - ,logb/loga = 0

Pertanyaan Lainnya